3.13.69 \(\int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx\) [1269]

3.13.69.1 Optimal result
3.13.69.2 Mathematica [A] (verified)
3.13.69.3 Rubi [A] (verified)
3.13.69.4 Maple [F(-1)]
3.13.69.5 Fricas [B] (verification not implemented)
3.13.69.6 Sympy [F]
3.13.69.7 Maxima [F(-2)]
3.13.69.8 Giac [F(-1)]
3.13.69.9 Mupad [F(-1)]

3.13.69.1 Optimal result

Integrand size = 29, antiderivative size = 206 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=-\frac {i \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a-i b)^{3/2} f}+\frac {i \sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{3/2} f}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{\left (a^2+b^2\right ) f \sqrt {a+b \tan (e+f x)}} \]

output
-I*arctanh((c-I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a-I*b)^(1/2)/(c+d*tan(f*x 
+e))^(1/2))*(c-I*d)^(1/2)/(a-I*b)^(3/2)/f+I*arctanh((c+I*d)^(1/2)*(a+b*tan 
(f*x+e))^(1/2)/(a+I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))*(c+I*d)^(1/2)/(a+I*b) 
^(3/2)/f-2*b*(c+d*tan(f*x+e))^(1/2)/(a^2+b^2)/f/(a+b*tan(f*x+e))^(1/2)
 
3.13.69.2 Mathematica [A] (verified)

Time = 1.81 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.09 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\frac {\frac {i \sqrt {-c+i d} \text {arctanh}\left (\frac {\sqrt {-c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {-a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(-a+i b)^{3/2}}+\frac {\frac {(i a+b) \sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{3/2}}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{(a+i b) \sqrt {a+b \tan (e+f x)}}}{a-i b}}{f} \]

input
Integrate[Sqrt[c + d*Tan[e + f*x]]/(a + b*Tan[e + f*x])^(3/2),x]
 
output
((I*Sqrt[-c + I*d]*ArcTanh[(Sqrt[-c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt 
[-a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(-a + I*b)^(3/2) + (((I*a + b)*Sqrt 
[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]* 
Sqrt[c + d*Tan[e + f*x]])])/(a + I*b)^(3/2) - (2*b*Sqrt[c + d*Tan[e + f*x] 
])/((a + I*b)*Sqrt[a + b*Tan[e + f*x]]))/(a - I*b))/f
 
3.13.69.3 Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.12, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {3042, 4051, 27, 3042, 4099, 3042, 4098, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 4051

\(\displaystyle -\frac {2 \int -\frac {a c+b d-(b c-a d) \tan (e+f x)}{2 \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a c+b d-(b c-a d) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a c+b d-(b c-a d) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}\)

\(\Big \downarrow \) 4099

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {1}{2} (a-i b) (c+i d) \int \frac {1-i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b) (c-i d) \int \frac {i \tan (e+f x)+1}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {1}{2} (a-i b) (c+i d) \int \frac {1-i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b) (c-i d) \int \frac {i \tan (e+f x)+1}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 4098

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {(a+i b) (c-i d) \int \frac {1}{(1-i \tan (e+f x)) \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}d\tan (e+f x)}{2 f}+\frac {(a-i b) (c+i d) \int \frac {1}{(i \tan (e+f x)+1) \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}d\tan (e+f x)}{2 f}}{a^2+b^2}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {(a-i b) (c+i d) \int \frac {1}{-i a+b+\frac {(i c-d) (a+b \tan (e+f x))}{c+d \tan (e+f x)}}d\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}}{f}+\frac {(a+i b) (c-i d) \int \frac {1}{i a+b-\frac {(i c+d) (a+b \tan (e+f x))}{c+d \tan (e+f x)}}d\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}}{f}}{a^2+b^2}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2 b \sqrt {c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) \sqrt {a+b \tan (e+f x)}}+\frac {\frac {i (a-i b) \sqrt {c+i d} \text {arctanh}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a+i b}}-\frac {i (a+i b) \sqrt {c-i d} \text {arctanh}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {a-i b}}}{a^2+b^2}\)

input
Int[Sqrt[c + d*Tan[e + f*x]]/(a + b*Tan[e + f*x])^(3/2),x]
 
output
(((-I)*(a + I*b)*Sqrt[c - I*d]*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f 
*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a - I*b]*f) + (I*(a 
 - I*b)*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sq 
rt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[a + I*b]*f))/(a^2 + b^2) - ( 
2*b*Sqrt[c + d*Tan[e + f*x]])/((a^2 + b^2)*f*Sqrt[a + b*Tan[e + f*x]])
 

3.13.69.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4051
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + 
d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(a^2 + b^2 
))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c 
*(m + 1) - b*d*n - (b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e 
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
&& NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && Int 
egerQ[2*m]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 
3.13.69.4 Maple [F(-1)]

Timed out.

\[\int \frac {\sqrt {c +d \tan \left (f x +e \right )}}{\left (a +b \tan \left (f x +e \right )\right )^{\frac {3}{2}}}d x\]

input
int((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)
 
output
int((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)
 
3.13.69.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11981 vs. \(2 (158) = 316\).

Time = 7.67 (sec) , antiderivative size = 11981, normalized size of antiderivative = 58.16 \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="fric 
as")
 
output
Too large to include
 
3.13.69.6 Sympy [F]

\[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {c + d \tan {\left (e + f x \right )}}}{\left (a + b \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate((c+d*tan(f*x+e))**(1/2)/(a+b*tan(f*x+e))**(3/2),x)
 
output
Integral(sqrt(c + d*tan(e + f*x))/(a + b*tan(e + f*x))**(3/2), x)
 
3.13.69.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="maxi 
ma")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(((2*b*d+2*a*c)^2>0)', see `assum 
e?` for mo
 
3.13.69.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="giac 
")
 
output
Timed out
 
3.13.69.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {c+d\,\mathrm {tan}\left (e+f\,x\right )}}{{\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}} \,d x \]

input
int((c + d*tan(e + f*x))^(1/2)/(a + b*tan(e + f*x))^(3/2),x)
 
output
int((c + d*tan(e + f*x))^(1/2)/(a + b*tan(e + f*x))^(3/2), x)